

Secure Key Management for NASA Space Communication

A. Balasubramanian¹, S. Mishra¹, R. Sridhar²

¹CompSys Technologies Inc., Amherst, NY ²Department of Computer Science and Engineering, University at Buffalo (SUNY), Buffalo, NY

- Space based networks
 - Architecture
 - Security
- State of the art
- Proposed security solution
 - Classification of space-based networks
 - Security solutions suitable for the classifications
- Conclusions and Future work
- References

Space Based Networks

- All nodes (space and terrestrial) are part of one large network
- Satellite communication is no longer just point to point
 - A satellite can contact any terrestrial node to relay information to its ground controller
 - Cost effective
 - Smaller delays
- Examples
 - Myriad of loosely coupled ground stations
 - Sensor webs

Space Based Networks: Architecture

- Components of space-based networks considered here
 - Satellites, Space sensors, Ground nodes, Terrestrial sensors

Space Based Networks: Security

- Traditional NASA security solution
 - Security through obscurity
- Security risks introduced by space-based networks
 - Space network is no longer obscure
 - Easier to compromise the protected space network by compromising the relatively insecure ground network
- Challenges in providing a security solution
 - Space networks are heterogeneous
 - Network components vary in security requirement and resource limitations
 - A generic security solution catering to all space based network component may not always be efficient

State of the Art

- Communication protocol for space-based networks
 - SCPS (Space Communication Protocol Specification) is used for space communication
 - IP (Internet Protocol) is used for ground communication
 - CCSDS (Consultative Committee for space data systems) developed SCPS-Security Protocol for securing space communication
 - IPSec is used to secure ground communication
- OMNI (Operating Missions as Nodes in the Internet)
 - IP is used for all communication and IPSec is implemented for security
- Security is implemented in layer-3

State of the Art: IPSec and SCPS-SP

- SCPS-SP is a bit optimized version of IPSec
- Source and Destination share a secret key and create a security association (SA)
- SA determines parameters such as the length of the key and the encryption algorithm
- All layer-3 packets exchanged between the source and destination are encrypted
- Internet Key Exchange Protocol (IKE)
 - used for key management, to implement IPSec or SCPS-SP
 - consists of OAKLEY (for key exchange) and ISAKMP (for establishing SA)
 - uses pair-wise algorithms

Security Solution: Overview

- Need for a security solution
 - Pair-wise communication introduces high overheads
 - The operational IKE reduces bandwidth utilization to an extent, but may not provide strong authentication
 - Heterogeneous networks have different security requirements and constraints
- Proposed solution
 - Classifies network components in terms of their characteristics
 - Provides a suitable security solution based on the classification
 - The solution is layer and architecture independent

Security Solution: Classification

- Parameters used for classification
 - Resource constraint
 - Mobility
 - Data rate of communication

	Resource Constraint	Mobility	Data rate of communication
Terrestrial sensors	High (Computational)	Low	Low
Space sensors	Low	High	High
Ground node	Low	Low/Medium	High
Satellite	High (Bandwidth)	Medium	Low

Security Solution: Classification

- Three communication sub-networks are considered in this work
- Intra-Ground
 - High data rate of communication
 - Typically low resource constraints
 - May need a decentralized solution
- Satellite Space sensor
 - Low rate of communication
 - Have bandwidth constraints
- Space sensor Terrestrial sensor
 - Low rate of communication
 - Constrained in terms of computational resources

- Security for ground nodes is very critical
 - Compromising a ground node may lead to a compromise of the protected space network
 - Attacks on the ground network is relatively easier
- Any ground node can be designated as a receiving station
 - Thus, connectivity to a central server may not be always feasible
- We propose a symmetric/asymmetric key based hybrid key management solution that is
 - Decentralized, scalable and low cost
 - Secure against insider and outsider attacks
 - Suitable for wired and wireless networks

Hybrid Security Solution: Overview

- Symmetric keys
 - Pair-wise keys exchanged between every pair of nodes
 - Not scalable, computationally inexpensive
- Asymmetric keys
 - One pair of (public, private) key for every node
 - Scalable, computationally expensive
- Hybrid
 - Locally symmetric, globally asymmetric
 - Restricting symmetric keys to local communication ensures scalability
 - Reduced use of asymmetric encryption decreases cost

Hybrid Security Solution: Algorithm

- Divide nodes into non-overlapping clusters
- Create group key for cluster nodes
- We have developed a novel algorithm to determine symmetric and asymmetric keys from the group key
 - Symmetric keys are computed by nodes themselves
 - No need for explicit key exchange
 - Symmetric keys are used to encrypt intra-cluster communication
 - Asymmetric key are used to encrypt inter-cluster communication

Hybrid Security Solution: Results

- Current simulation using a network simulator called GloMoSim
- Metrics used are
 - The percentage of nodes getting successfully initialized.
 - Delay in initialization
- Initialization is a state when nodes receive keys for secure communication

Hybrid Security Solution: Results

Security Solution: Satellite - Space sensor

- Satellite Space sensor characteristics
 - Bandwidth constraints
 - Satellites are statically keyed. No key management necessary
- However, in space-based networks, satellites contact several ground stations
- A satellite sharing the same secret key with all ground nodes may not be always feasible
- Increased network activity decreases key lifetime and increases the need for re-keying
- We propose an efficient key management protocol for rekeying, in a bandwidth constrained network

Security Solution: Satellite - Space sensor

- During its orbit, a satellite can communicate with a space sensor with which the
 - 1) satellite shares a key
 - 2) satellite does not share a key
 - 3) satellite shares a key, but the key needs to be refreshed
- For cases 2 and 3,
 - Authentication and key exchange is implemented among the space sensor
 - Secret key that is generated in the previous step is distributed to the satellite
 - Developing a low cost algorithm for this distribution, using a novel and cryptographically secure Pseudo Random Number Generator

Security Solution: Satellite - Space sensor

Security Solution: Terrestrial sensor— Space sensor

- Work in Progress
- Characteristics: Low rate of communication, low computational resources
- Assume that terrestrial sensors are statically keyed and use only one key to communicate with all space sensors
- Solution
 - Using keys of small length to provide prolonged security
 - Efficient key refresh algorithm
 - Algorithm to communicate the refreshed key to the terrestrial sensor and all the space sensors that share a key with it

Conclusions and Future Work

- Analyzed the security risks for a space based network architecture
- Classified the space-based network components based on certain identified parameters
- Using the classification, analyzed three sub networks formed among one or more network components
- Provided suitable key management solutions for the subnetworks
- Future work: Study the feasibility and performance of the proposed solution via simulation and analysis
- Future work: Extend the framework to provide solutions for other space-based network architectures

References

- 1) William Ivancic, "Architecture study of space-based satellite network for NASA missions", IEEE Aerospace Conference, Montana, March 2003.
- 2) Space Communication Protocol Specification (SCPS) CCSDS 713-5-B-1, CCSDS, May 1999
- 3) J. Noles, K. Scott, M.J. Kukoski and H.Weiss, "Next Generation Space Internet", 2nd ESA Workshop on Tracking Telemetry and Command Systems for Space Applications, 2001.
- 4) A. Balasubramanian, S.Mishra and R.Sridhar, "Analysis of a Hybrid Key Management Solution for MANETs", IEEE Wireless Communication and Networking Conference, New Orleans, LA, March, 2005.